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BehaFior of unsteady peerturbat&xls of steady salutims of quasilinear hyperbolicor 
parabulic degenerate systems of differential equations in partial derivatives is 
considered in the critical point neighborhood. The sought functions of analyzed 
equations are assumed dependent on two arguments, viz. coordinate z and t&me t., 
with an arbitrary number of sought functions. The point at which one of the system 
characteristic velocities vanishes, is call& critical. 

Prev&ously, the development of unskeady perturbations fn the critical point nei@&orh& 
wss stuaied /Ii cm the asmqtion that the coefficients and the right-hand sides of equaticms 
are ccmt.tnuous functions of their argments. As shcmk in /l/, the critical points are on 
such assumptions singular points of a system of ordinaxy differential equations obtained from 
the input system for steady solutions I and the behavior of unsteady perturbations in the 
critical. point neighborhood are defined by nonlinear differential equations in partial deri- 
vatives of the first order. 

Below* the constraints imposed on the right-hand sides of input equations are substanti- 
ally weakened in that first order d&continuities are admitted in the right-hand sides.Stea@ 
and unsteady solutions are considered in the neighborhood of d.%sconti.nuity points at which 
simultaneausly one of the characteristic velocities changes its sign, At such cxitticalpoinrs 
the derivatives of steady solutions become infinite. A nonlinear differential equation of 
first order is obtained fox the definition of unsteady perturbations whose propagation vel- 
ocity vanishes in the neighborhood of such critical points. This equation is a generaliza- 
tion of respective equation in /If obtained for the case of continuous right-hand sides and 
differs from it by the presence of a ~u~p~~enta~ piecewise constant term, The perturbation 
whose characteristic velocity vanishes, generates pxtrur33ations 05 other types. Formulas are 
obtained for the principal part of such perturbations in the critical point proximity, 

The obtained results can be used in the analysis of stability of steady solutians of 
hyperbolic systems of differential equations in the presence of points at which one of the 
characteristic velocities vanishes. fn problems of gasdynamics and physics of gasdynamics 
the vanishing of a characteristic velocity means that the flow velocity has reachedtbespeed 
of sound. 

1. Let us consider the hyperbolic system of equations for n functions ~~(s,r) dependent 
on two independent variables, viz. the three-dimensional coordinate x and time t 

System (1.11 is written in characteristic form, i+{nr,+f are the characteristic v&ocft- 
ies of the spat=, and the recurrent subscripts indicate sure3ation from f to A. 

0wing to the system hyperbolicity matrLx <ljij Is nondegertera~e. Its elemenizs and the 
characteristic velocities of system (2.11 are assumed to be continuous and differentiable 
functions of uk andz with respect to aS1 arguments. Functions f'(z+s) in the right-hand 
sides of Eq$.(l..l) are considered to be piecewise-continuous, and may have first order dis- 
continuities on some planes z= const ox some surfaces 
order partial derivatives of f f 

S(z+,,x) = 0 in the space I+, 2. First 
uEt I) will be considered as existing and continuous every- 

where where *{+,a$ are detenainate I except at poFnts belonging to discontinuity surfaces of 
these functions. 

?,et in the considered region of variation of variables u,, X oneofthesinglecharacter- 
istic velocities of the system of Eqs, /S,l.), for example C* (Us, 2) g vanish, while the remain- 
ing characteristic velocities c"(uk,x) (p - 2, . . . . n) are nonzero. We select some steady (time 
independent) solution Uj(z)(] = 1,2, . . aI n)of system (I.I),whichintersectssurface ~~(9, X)= 0 
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at some point 5* and is continuous in its small neighborhood. We call the point of inter- 
section of WI (x)(j = I,& . . ., n) with surface cl(tik.z) = 0 critical, and take it as the three- 
dimensional coordinate origin. Since we have the freedom of choice of sought functions, we 
can assume, without loss of generality, that Uj (0) = 0 for all. j from 1 to n. Then by 
virtue of the selected origin of coordinate x and of values of quantitie-i ZFf.wehave c1 (0, 
0 ,.'.. 0) = 0 at the critical point. 

In the case of steady solutions system (1.1) becomes the system of ordinary differential 
equations 

Il.21 

Since by assumption ciis the single characteristic velocity, hence when cl=O the first 
row of the matrix of coefficients vanishes for dU,fdx and, consequently, the rank of that 
matrix at points of surface cl= 0 is equal n- 1. At the remaining points of that region 
this rank is equal n. 

If function f1 is nonzero and continuous at points of surface cl= 0, the derivatives 
dU#xti = 1,2, . ..* n} become infinite at these points and change their sign when passing 

through that surface. This means that a solution which is continuous and single-valued for 
5 exists only in a one-sided neighborhood of the critical point, and that such points can 
only be considered as one of the boundaries of the interval in which the solution is studied. 

If the critical point lies within the interval, then the existence of a solution which 
is continuous and single-valued for 5, function f' (&x) must change its sign at the critical 
point either continuously or discontinuously. 

In the first case, points of space WE, 2, at which conditions 

c1 (U,, z) = 0, f’ f&, Cr) = 0 (1.31 

are simultaneously satisfied, are singular points of steady equations (1.2). The steady and 
unsteady solutions under conditions (1.3) were investigated in /I/. 

In the second case, when function f 1 is discontinuous at points of surface cl =i: 0, a 
continuous solution in the two-sided neighborhood of the critical paint is possible under 
conditions that 

6 = 0, f_l# $2 0.4) 

The subscripts minus and plus denote here and suksequentlyquantitlesimmediatelyto~e 
left and sight of the critical point, respectively. 

Under conditions (1,4) the derivatives 
x = 0. 

dUjk& becomes infinite at the critical point 

The set of points defined by the equalities (1.3) and the intersection of surface cl= 0 
with the surface where f has a discontinuity constitute (a-- %)-dimensional surfaces in the 
(n + *)-dimensional space of variables fis,s. 

Note that the requirement for the existence of a eontinuous steady solution in the crit- 
ical point neighborhood does not impose any additional conditions on functions f@ (p =f 2, . . . . n), 
Hence they axe considered below, for simplicity, as continuous and differentiable throughout 
the considered region, including 'chepointswhere cl= 0. 

2. Let us assume that the steady solution Uj(X) is weakly pqrturbed, i.e. the solution 
af@. t) of Eqs.Il.1) istbesum of solutions C3,@) +a~*(~,t), where ut*(s,t) is a small un- 
steady perturbations. Consider the behavior of solution mj(rTr) of the system of Sps,(l.l~ in 

the small neighborhood (of dimension&) of the cirtical point 
0 (i= 1,2, II . *, n). 

s=O atwhich et=OandiJj= 

We consider in this point the case of the discontinuous function f” #at satisfies con- 
ditions (L.4). 

We denote by ljOi the limit values of lji for x~CJ,~‘~=O~ and introduce the new vari- 

ables 

IDI (5* t) = E&* U& r8>= rj#Q 

rJk = rt,b,-r (i, 1, k= 1, 2, , . ‘, n) 
f2‘ll 

Since the solution of Zqs.fl.1) is considered in the small neighborhood of the critical 

point, the quantities uj(x,t) and, consequently, also wi(x, t) are small. Suppose the quant- 
ity wl= w is of order r/z, while the quantities w,, (2, t), W,,o(t),(y= 2,. I .,a), where w&o(t)= 

w,,fO,t), are of order 6. The characteristic time scale quantity is assumed to be of order 

$6, These nontrivial and important assumptions will be confirmed subsequently in the case 
of solutions concentrated close to the critical point under conditions (1.4). 

We expand the coefficients and right-hand sides of Bqs.(l.l) in series in w, and X, 

retaining in them the principal terms 
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(2.2) 

(2.3) 

Zjoi = Zjf (O,O), 
a2 i 

Ipi=-& (0, 0), C#=C@ (0,O) 

Cki = g (0,O). Cl11 = $(O,O), cx'= g (0, 0) 

fo'=f'(O,O), f++(O,O) 

where the notation (0.0) shows that the respective quantity is calculated at the critical 
point, wherex= O,d,z 0. 

Since 10' and fl’ have different values at 
shall consider Eq.(2.2) separately at the right 

Everywhere below, Latin indices run from 1 
Expressing au,/& and &/3x, respectively, 

(2.1), we obtain instead of (2.3) 

the right and left of the critical point, we 
and left of point x= 0. 
to n, and the Greek ones from 2 to n. 
in terms of aw,/at and aw&x using formulas 

n 

(2.4) 

Retaining in EqS.(2.4) only terms of order unity we can obtain a quasi-steady solution 
of these equations, neglecting time derivatives which are of order 6. Integrating (2.4) we 
obtain 

w,,= a,,x + b,,w" + w,,o (t) 
(2.5) 

fo' 
ap=c, 

co 
l+= - -$Z#rjr 

j=1 

We use solutions (2.5) for transforming Eqs.(2.2). Retaining in (2.2) terms of order 
unity and fi we obtain 

$+I cllw+sx+r~~+cp(t)]~=fol+~w (2.6) 
n " 

s=crl+ 3 cP1agr r=clll+ 2 c,,lb,, 
r-2 p=* 

cp (t) = $0 cfiN0 (th x =/I’ - f0’ ,jl Zjl’rjl 

To reduce Eq.(2.6) to a simpler form we introduce the new variable 

C= c,*w+ sx + rw* (2.7) 

Multiplying Eq.(2.6) by cl1 f 2rw we obtain 

$ + [c + cp @)I$ = Y + ac + scP(t) (2.8) 

V = fob’, a=f~‘+s+fO~(~-~Z*llr~l) 
+I 

It is assumed here that Eq.(2.8) holds for the left and right from the point s=O. 
Note that in many cases functions W,,O (t) and, consequently, also p(t) can be taken as 

equal zero, since these quantities are determined by the perturbations arriving in the criti- 
cal point neighborhood and connected to the characteristic velocities @PO. In any case, if 
q(t) and dcp/dt are small, whichistrue for a wide number of problems, then by denoted C + m(t) 
by c and neglecting in the right-hand side of Eq.(2.8) the terms containing cp(t) and drp/dt, 
we obtain 

-$+c+=y+ac (2.9) 

Equation (2.9) defines both, the unsteady and steady solutions in the neighborhood of 



the critical point 5= 0. 

Let us, first, consider the steady solutions of that equation. Integrating (2.9) when 
&KU = 0 we obtain 

1 

x=2y 2 - + I9 + const (2.10) 

This shows that, if the solution is to pass through the critical point I= O,c= 0, it 
is necessary that the constant in formula (2.10) be zero and that the inequalities 

be satisfied. 

Y- < 0, Y+> 0 (2.11) 

The subscripts minus and plus denote quantities to the left and right of the critical 
point, respectively. Condition (2.11) is a refinement of the previously derived condition 
(1.4). 

The pattern of integral curves is shown in Fig.1, where for definiteness we select a_< 
O,a+>O. The changed pattern of integral curves for other combinations of a on the left and 

right of the critical point is readily obtainable. 
Using (2.10) in the case of solution passing through the critical point it is possibleto 

calculate that the characteristics of Eq.(2.9) pass through 
half of the critical point neighborhood of dimension 6 in a 
time of order J& which was taken as the characteristic time 
of solution change. This is also the time of linear inver- 
sion of perturbation defined by Eq.(2.9), if its amplitude 
is of order f8 and the characteristic length is of order6. 
Form of the steady solution (2.10) and the relation be- 
tween c and w defined by formula (2.7) confirm the previous 
assumptions on the order of magnitude ofwin the coordinate 

II origin neighborhood. Obviously there exits a class of un- 
steady solutions of the same order of magnitudes. Equality 

Fig.1 (2.5) corroborate the previous assumption thatthequantities 
w,,(x,~) are of order 6, if wVO(t) is also of order 6. 

3. Let us compare Eq.(2.8) with the respective equation in /l/, obtained for the solu- 
tion in the small neighborhood of the critical point when the right-hand sides of Eqs.tl.1) 
are continuous. 

+ + Ic+ + cp @)I 2 = ac, + Bz -t- f (t) 

c* = CllW + sx, a=f?+s, B=(f.l+ M~fp%2p)~ll--fils 

8= czl + $5 C&,. f @) = scp (0 + Cl’ j, fp’W,Ll(t) 

(3.1) 

The notation in the present paper is used in expressions for c,, a, p,/(t), and expres- 
sions for s and v(t) are the same as in formula (2.6). 

The comparison ofEqs.(2.8) and (3.1) shows that the cases of continuous and discontin- 
uous function f', can be considered as one, if the relation between w and c is always defin- 
ed by equality (2.7), and the equation for the determination of c in the 6-neighborhood of 
the critical point is of the form 

+ + Ic + cp (41 S=v+ac+Bx+F(t) (3.2) 

F(t)=-scp@) (Y#Oh F@)=f@) (y=O) 

When y#O, the term px is small in comparison withy and ac, so that it can be neg- 
lected, and when y = 0, i.e. when function f'(f,,' = 0 is steady, it is possible to neglect in 
conformity with condition (1.3)), in formula (2.7) the term rwe which is small in comparison 
with terms proportional to w and 5. 

Function q(t) is the same in Eqs.(2.8) and (3.1) but, as was shown in Sect.2 it can be 
eliminated from Eq.(2.8), and as shown in /l/, functions cp (t) and f (4 can be eliminated 
from Eq.(3.1) by the introduction the new variables c(z,t) -c'(t) and x(t) -x"(t), where c"(t) 
and x”(t) are particular solutions of the system of differential equations 

dc”/dt = ac” + fh? + f (t), dz”/dt = co + ‘p (t) 

Thus by expressing the equation for c in the form (3.2) and the relation between c and 
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~1 in the form (2.7), we obtain the equation that defines the solution 
any critical point, and consider Eq.(3.2) under the conditions that 

F (1) = m (t) = 0 

The solution of Eq.(3.2) can be obtained by integrating along the 
system of equations 

in the neighborhood of 

(3.31 

characteristics of the 

(3.4) 

Equations (3.4) define unsteady and steady solutions. In the steady case system (3.4) 
with condition (3.3) yields for c(z) a solution in the parametric form c = c(t),3 = z(t). 

In the case of appearance of solutions nonunique with respect to x it is necessary to 
introduce discontinuities, as in /2/, in order not to alter j&z, which was also done in /l/. 

It is possible to obtain from Eq.(3.2) an equation for the determination of the small un- 
steady perturbations c* (5, t) = C(Z, Z) -C(z) of the steady solution C(z) 

According to (2.7) the quantity C* 
W (5) = Ijo' Uj (x)~ by the relation 

is connected to the quantity W* = w - W(X), where 

c* = cI1w+ + (2rW + w*)w* (3.6) 

where the second term is considerably smaller than the first, 
The behavior of perturbations c* and wlr* - wufx, j) - W,(x), W,(x)=ljopU~(x) in the small 

neighborhood of point r=O is defined by Eq.(3.5) and formulas 

w$$* = 6&w* (2W (z) + w*) + wpo (t) (3.7) 

which follow from (2.5). Outside the neighborhood of point z = 0 it is possible to apply in 
conventional manner the linearized system of Eqs,(l.lf, which we write for function wl* in the 
C&OX-Ill 

(3.8) 

WI* = '!jk (0, 0) Q*,*, uk* = rkjWj*, z+* = U* (5, t) _ IJ, (xl 

$$m= g- 1 8 (If%“) dfl, 
T-if7 ‘JR 

I 1 
(i, f, k, n& = 1, 2, . . ., n) 

Equations (3.8) are valid throughout the region of variation of x, for wu* (p = &...,n), 
including the critical point neighborhood, but by virtue of the linearity of (3.8) the term 
containing we2 which is negligibly small in the critical point neighborhood and outside it 
when y = 0 (/,,I = 0) , is omitted in (3.7). The term containing Wan must be added to the 
solution for tag*, if the latter is to be made more accurate in the critical point neighborhood 
when qf0. 

Equations (3.5) and (3.8) are necessary for solving the stability problem along the whole 
segment of 5 (-L1 < x < L,), where a steady solution U](x) of the system of Eqs.(l.l) exists 
and is considered. Depending on the problem formulation, the critical point I = 0 may co- 
incide with right or left boundary of the x segment or be contained within it. For stabil- 
ity investigation of solution U,(x) along the whole segment it is necessary also to define 
the conditions of reflection of perturbations Wj* (x, t) from the boundary x=-L, or x = L,, 
or fran both simultaneously. As shown in /3/, the number of boundary conditions must corres- 
pond on the left and right to the number of positive and negative characteristic velocities of 
system (1.11, respectively. 

We introduce here also, as in /l/, as the characteristic of behavior of small perturba- 
tion in the neighborhood of point x = 0, c = 0, the perturbation area 

S=&*(Z,t)&, c*(.r,2,)=C(T,t)- C(z) (3.9) 
X, 

Since the discontinuities introduced in the solution do not alter the perturbation area, 
and the evolution of solution is defined by Eqs.f3.4) I the variation of perturbation area &' 
with time is determined by the divergence of the vector composed from the right-hand sides of 
Eqs. (3.4) 



S (t) = S (0)exp at 

Formula (3.10) was obtained on the assumption that integration of 
over the region outside which c* (I, t) = 0. 
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(3.10) 

(3.9) is carried out 

If c* (z,t)# 0 and also outside theintegrationinterval (zl,r& it is necessary to add 
to formula (3.10) the area increase q 

+as+q, 

C(x)+C+(x,t) 

q (2, t) = 
s 

CdC (3.11) 
C(X) 

C-7 = Q(% t) - q (Q, t)= 
[ 
c(X,)C*(re,t) + 

[c(21)c* (rnt) + +*"@1,t)] 

+z*,t)] - 

The behavior of perturbations of steady solutions passing through singular points, i.e. 
for conditions y* = 0, a+ = a_, p+ = fi- was investigated in /l/ using Eqs.(3.4) and (3.3). 

Here, we consider the behavior of perturbations of steady solutions passing through a 
critical point on the assumption that function f’ is discontinuous. In that case in Eqs.(3.4) 

y- C&y+ > 0, a_# at, while fiz,F(t) and cp(t) are small in comparison with terms containing 
y and c. 

The pattern of integral curves for y+O,a-#a+ is shown in Fig.1. It suggests a de- 
formed saddle. The direction of increase of t is indicated on curves by arrows. 

In this case there are four solutions passing through the point r = 0,~ = 0: aob, lof, lob 
and aof. Let us consider the development of perturbations in solution Zof whose character- 
istics on solution lof converge at point r = 0,~ =O. Perturbations of this solution assume 
in conformity with (3.4) in time the shape of curvilinear triangle lying between curves fob 
or sol, depending on the perturbation sign, and bounded by the discontinuity, respectively, 
on the right or left (Fig.1). 

In the absence of area increase 4, the area of the curvilinear triangle lying to the 
right of the critical point (c* >0) varies as expa+t, while that of the triangle on theleft 
of the critical point (c+ (0) varies as expa-t. The evolution in time (tl< ts < ta) shown in 
Fig.1 of the positive (c* >0) perturbation of solution lof moving in the negative direction 
of axis r with a+>O. 
time t- fc9 where 8, 

The forward front of that perturbation reaches the critical point in 
is the forward front coordinate at t= 0 and its rear front becomes 

a weak shock wave whose propagation velocity is the arithmetic mean of characteristic veloc- 
ities ahead and behind the discontinuity. Since a+ >O, the discontinuity begins to move at 
some instant of time in the positive direction of the X axis, as shown in Fig.1. When a+ (0 
the discontinuity moves in the direction of point x = 0,~ = 0, which leads to the damping of 
perturbations. 

The negative perturbation of solution lof moving along integral curve fo toward point 
0 develops similarly, except that its forward front becomes a weak discontinuity, and in a 
finite time it assumes the shape of curvilinear triangle on the left of the critical point; 
from that instant its development is determined by the coefficient a_ . Depending on the sign 
of a_ the weak perturbation moves in the negative direction of the z axis (a_>O), which in- 
dicates an increase of perturbations, or in the positive direction of that axisx (a-<O) to- 
ward the critical point, which results in perturbation damping. 

When the positive perturbation moves along the integral curve lo toward the critical 
point, its forward front, in this case, becomes a weak discontinuity. This perturbation is 
transformed in time in a curvilinear triangle on the right of the critical point, and its 
further evolution is determined by the sign of a,. 

A negative perturbation moving along the integral curve 10 is transformed in time in a 
curvilinear triangle on the left of the critical point, and its increase of damping is deter- 
mined by the sign of a_. 

We shall now consider the development of a positive perturbation of solution aob. Let at 
the initial instant of time t = 0 the amplitude of that perturbation at point x = O,c= 0 be 
nonzero. Since any point of characteristic lo reaches point o in a finite time of order 
fi and the amplitude of that perturbation is zero at the critical point. As the result,the 
whole perturbation leaves the 8-neighborhood of the critical point in time 
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t- 

The same occurs with the negative perturbation of solution cob. 
It is possible to consider in the same way the development of positive and negative per- 

trubations of solutions lob and aof. Any initial perturbation of these solutions leaves the 
6-neighborhood of the critical point in the finite time t of order fi, which substantially 

distinguishes solutions sob, lob and aof from solution lof, where the perturbations are always 
retained at the critical point. 

The above analysis enables us to present cases in which the critical point coincideswith 
the left or right end of the segment of z. 

4. The investigation of perturbation development in Sect.3 and in /l/ was based on the 
assumption of no increase of perturbation area which may prove essential and affect the con- 
clusions on the increase or decrease of perturbations in the critical point neighborhood, Let 
us show this. 

Consider the interaction of perturbation c*(~,t) or W* (z, t) = w (z, t) - W (2) with perturba- 
tions propagating at velocities c I* that are nonzero at the critical point. This enables us 
to estimate magnitude of area increase Q in equality (3.11) which may represent a reflected 
signal generated by perturbations propagating at characteristic velocities c@. 

The most interesting case is when these perturbations are themselves generated by per- 
turbation w*@,t). Because of this, we assume below that the order of magnitude of these per- 
turbations is equal to their variations in the critical point neighborhood, with the character- 
istic time of variation of these perturbations is the same as that of w*(s,t). 

Let us determine the behavior of quantities wII* more exactly than in equality (3.7). In 
the latter the first term in the right-hand side contains a perturbation expressed in terms 
of w*, and consequently, propagating at velocity c, only the second term can correspond to 
perturbations propagating at other characteristic velocities. To refine formula (3.7) we 
revert to the system of Eqs.cl.1) and consider these equations for i from 2 to n, expressing 
uj in terms of KIT in conformity with (2.1) 

(4.1) 

where the Kronecker delta &p=i when p=k and &.l*=o when Pf k, and functions ak" depend on 
wi and z and vanish at the critical point. We solve these equations for derivatives of w,, 
with respect to Z, and obtain 

where A,,B,, D, are functions of wlr and Z, which vanish at zero values of arguments, and 
functions F, are linearly expressed in terms of p. 

We expand all these functions in the neighborhood of the critical point in series in tok 
and Z. We determine dwldt and Z+ using, respectively, formulas (2.6) and (2.5), and subst- 
itute these in the right-hand sides of formula (4.2), neglecting the terms w,,(t), which, as 
shown below, on the assumptions made at the beginning of this Section, give corrections of a 
higher order of smallness than the remaining terms in (2.5) and (2.6). Restricting the ob- 
tained expression to a few first terms of expansions, we obtain 

(4.3) 

where 5, b,,,e,,,g,,,h,,k,, are constant coefficients of the expansion. 
Using integration by parts, we obtain for w,, the more accurate formula 

x 

wp=nrz+&,za+(br-k,J W(z)dz+ s (4.4) 

u,, = (b,, - k,J w* dz + P, (t) 
0 

where (p,,(t) is a derivative function dependent only on time. 
This equality remains valid when function IU has discontinuities, since integration over 

a discontinuity can be carriedouttaking dVjdz as a generalized function. This statement is 
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based on that the variation of quantities at a discontinuity coincides with an accuracy to 
the third oxder of smal.lness with respect to the discontinuity amplitudecorresponds~iZ%\their 
variation in some simple wave ,Of that approximates t&e discontfntity at the given instant of 
time. 

The terms neglected fn equality f4.3) result in an error of order az, whffeinequality 
14.4) the error is of ox&r 8, if Y=#, when w is of order 1) and du+?& is of order unity. 
When u) and dw/d+ if ~+a axe, respectively, of order@and a-L'*, the error in equality (4.3) 
due to neglected terms is of order 6, and in (4.4) it is of order 4% 

All terms in the right-hand side of equality (4.4) except the latter are expressed in 
terms of .T and w at the running pointi hence they relate to the stationary background or to 
a perturbation moving at velocity c. 

The eXpression ptc8 which at the coal&red paint is not expficitly dependent on w*, re- 
presents a perturbation that corresponds tu other characteristic velocities, basically to the 
characteristic velocity c*" 

In conformity with the assumption made at the beginning of this point, we shall cansider 
that the ordex of magnitudr of 9 is determined by the first integral term. Note that 
provides a more exact defbnftion of the term wW@) in equality t2.51. We aan verSfy the kli- 
dity of neglecting terms aumtq in the derivation of Eqs.14,3% &en y "ro, as weI1 as when y$=@, 
by assuming that We and tu,&) are quantities of the same order. 

Equality (4.41 shows that perturbation @W.tf in the critica% point neighborhood gen- 
erates perturbations vu that correspond to other chaxaeteristic velocities, and axe equal in 
the order of magnitude to the area S calculated by fovmula (3.9). 

Assuming that the critical point 12.~ at a finite distance from the segment boundaries, 
where the conditions of waves reflection axe specified with finite coefficients, and the in- 
terconverrlbflfty of waves inside the segment cannot materially affect their order of magni- 
tude, it can be readFfy proved that the area increase p is determined by T+ 

This impiies that the order of magnitude of P is cti~', where ccl is a finite numbex, fn- 
dependent of 5). 
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